
Technological advancement comes at a price. In the context of materials, there is ever increasing demand which is often accompanied by limited supply. Additionally, the raw materials that underpin our modern lives come with environmental and social impacts at many stages in the supply chain.
Critical materials or elements are those which are at risk of short supply but are economically important, including those that possess unique magnetic, catalytic and luminescent properties. Such is the critical nature of these materials to the technologies that enable wind turbines, electric vehicles, fuel cells, electronics and solar panels to name but a few examples, that the European Commission has compiled and regularly updates a list of critical materials, and rare earths are at the top of the list in terms of supply risk. These include dysprosium, neodymium, terbium, europium and yttrium. Rare earth metals are not the only challenge though; platinum group metals are required as catalysts in electrolysers, fuel cells and pharmaceuticals synthesis, and cobalt remains a key component of electric vehicle batteries.